Plastic Surgery Pearls for the Acute Care Setting

David W. Kim, MD
Director, UCSF Facial Plastic Surgery

Overview

- Optimal scar formation
 - Physiology and pathophysiology of wound healing
 - Suture selection
 - Adhesives
 - Tension alleviation
 - Wound edge eversion
 - Post-op care
 - Surgical scar revision

Overview

- Special problems
 - Complex wounds
 - The lips
 - The ears
 - The eyelids
 - The nose

Overview

- Each injury to our skin can result in a scar
- We must be:
 - Thoughtful in prevention
 - Meticulous in technique
 - Diligent in treatment
 - Committed in revision
 - A little lucky
 - And philosophically invested!

Overview

- Prevention
 - Skin physiology and wound healing
 - Technique for incision, excision, closure
 - Wound care
- Non-surgical therapy
- Surgical therapy (scar revision)

Physiology

- I. Inflammatory Phase (Immediate to 2-5 days)
 - Hemostasis, Vasocostriction, Inflammation, Vasodilation, Phagocytosis
- II. Proliferative Phase (2 days to 3 weeks)
 - Granulation, fibroblast proliferation, collagen production, neovascularization, Epithelialization
- III. Remodeling Phase (3 weeks to years)
 - New collagen formation, remodeling, contraction
Pathophysiologic Factors

Inflammatory Phase
- Infection, colonization, irritation → prolonged inflammation, erythema, granuloma

Proliferative Phase
- Fibroblast and collagen hyper-proliferation, collagen production

Remodeling Phase
- New collagen disorganization, overgrowth, contracture

Pathologic Factors

- Factors contributing to poor scar formation:
 - Genetic predisposition
 - Darkly pigmented skin
 - Area of tension
 - Tissue trauma
 - Sub-optimal wound closure
 - Sun exposure
 - Poor wound care

Characteristics of the Ideal Scar

- Flat and level with surrounding skin
- Match color of surrounding skin
- Narrow
- Parallel to favorable skin lines
- Sinuous or irregular without straight or unbroken lines

Hypertrophic Scars

- Exaggerated growth of scar tissue remaining within confines of area of trauma

Keloids

- Exaggerated growth of scar tissue, extending beyond the areas of trauma, projecting above the level of the surrounding skin

Prevention

- Traumatic injuries:
 - Wound care
 - Thorough cleansing / disinfection of superficial wounds
 - Closure (sutures) of deeper lacerations to sub-cutaneous level
 - Moist, aseptic healing environment
Closure

- **Goal:** maximize scar camouflage
- **Preparation**
 - Strategic placement.
 - Clean field.
 - Appropriate suture.
- **Technique**
 - Gentle handling is critical.
 - Symmetry: depth, length, width.
 - Minimize tension—account for edema.
 - Appropriate stitch technique.
 - Evert skin edges.

Clean Field

- Remove gross debris from wound.
- Thorough surgical prep.
- For high risk wounds:
 - Pre-operative antibiotics.
 - Antibiotic irrigation.
 - Consider delay of closure for dirty wounds.

Gentle Handling

- Use of skin hooks to manipulate tissue.
- Fine atraumatic forceps.
- Avoid crushing skin edges.
- Minimize pressure to vascular pedicle.

Strategic Placement of Incisions

- RSTLs.
- Sub-unit borders.

Perception theory – how do we see?

- Active process involving selection
- We constantly (unconsciously) sort, select, and assign sensory information
- "Visual search" = process of distinguishing between 2 classes of signals:
 - Target signals (must be recognized)
 - Background signals (ignored)
Perception - visual search

Nature has provided us with the ability to respond to what is necessary, and ignore the irrelevant.
- If visual info resembles normal – we ignore and assume the rest.
- BUT – if abnormal, we consciously notice.
- We readily perceive the unexpected.

We unconsciously assume the expected, and consciously see the unexpected.

Perception

Goals for Wound Closure
- Symmetry
- Tension free
- Eversion
Closure

- The wound will contract in the months following closure.
- Must compensate for this with alleviation of tension and eversion
- Clip MJ

Deep layer closure.
Cutaneous layer closure.
Special techniques.
- Beveled incisions.
- Vertical mattress sutures.

Deep closure begins to evert wound.
Needle must capture tissue away from wound edge.
Keep skin edge mobile, untethered to deep closure.

Deep tissue approximation
- Minimizes tension
- Avoids subcutaneous dead space.
- Prevents inward contracture & wound inversion.

Adjust for uneven depth of edges.
- Differential depth of bites.
Closure

- **Eversion:** superficial closure
 - Needle must enter tissue perpendicular to skin or even pointed slightly away from wound.
 - Needle should capture same depth and width of tissue on opposite side and exit at same angle.

- **Simple Closure**
 - **Interrupted**
 - Allows for differential adjustment of wound edges.
 - More resistant to dehiscence with suture break.
 - **Continuous**
 - Standard—faster, evenly distributes tension along wound.
 - Locked—resists loosening, hemostatic, potential tissue strangulation.

Closure

- Eversion: bevel incisions to set up eversion.
Closure

- **Eversion: vertical mattress**
 - Allows for maximal eversion.
 - Keep inner bite very small to create hairline scar.

- **Vertical mattress**
 - Maximal skin edge eversion.
 - Alleviates tissue excess & dead space.
 - Reduces tension.
 - Ideal for thicker skin.
 - Minimize width of Inner bites.

Skin Flap Physiology

- **Undermining to reduce tension**
 - Mobilizes skin and soft tissue.
 - Helps to recruit tissue into defect.

- **Tension (stress) decreases up to a critical distance of undermining (4cm in pig model).**

Sutures

- **Selection based on tissue considerations and suture variables.**
- **The perfect suture:**
 - Favorable absorption profile.
 - Minimal tissue reaction.
 - Easy handling.
 - High tensile strength.
 - Resistance to infection.
Absorbable Sutures, Natural

<table>
<thead>
<tr>
<th>Type</th>
<th>Strength</th>
<th>Absorption</th>
<th>Filament</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain gut</td>
<td>Str: 2/5</td>
<td>75% 7d</td>
<td>Twisted (virtual monofil.)</td>
<td>+++ tissue reactivity Hard to use</td>
</tr>
<tr>
<td>(animal collagen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromic (animal collagen)</td>
<td>Str: 2/5</td>
<td>75% 14d</td>
<td>Twisted (virtual monofil.)</td>
<td>+++ tissue reactivity Hard to use</td>
</tr>
<tr>
<td>Fast Absorbing Gut</td>
<td>Str: 2/5</td>
<td>75% 5d</td>
<td>Twisted (virtual monofil.)</td>
<td>+++ tissue reactivity Hard to use</td>
</tr>
</tbody>
</table>

Absorbable Sutures, Synthetic

<table>
<thead>
<tr>
<th>Type</th>
<th>Strength</th>
<th>Absorption</th>
<th>Filament</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vicryl</td>
<td>Str: 4/5</td>
<td>65% 14d</td>
<td>Braided</td>
<td>++ tissue reactivity Hard to use</td>
</tr>
<tr>
<td>Dexon</td>
<td>Str: 4/5</td>
<td>65% 7d</td>
<td>Braided</td>
<td>++ tissue reactivity Easy to use</td>
</tr>
<tr>
<td>Monocryl</td>
<td>Str: 4/5</td>
<td>65% 7d</td>
<td>Monofil.</td>
<td>++ tissue reactivity Easy to use</td>
</tr>
<tr>
<td>PDS</td>
<td>Str: 4/5</td>
<td>75% 14d</td>
<td>Monofil., polydi-oxanone</td>
<td>++ tissue reactivity Med. to use</td>
</tr>
</tbody>
</table>

Nonabsorbable Sutures

<table>
<thead>
<tr>
<th>Type</th>
<th>Strength</th>
<th>Comp.</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silk</td>
<td>1/5</td>
<td>Braided</td>
<td>+++ tissue reactivity Easy to use</td>
</tr>
<tr>
<td>Nylon</td>
<td>3/5</td>
<td>Monofil.</td>
<td>Min tissue reactivity Med. to use</td>
</tr>
<tr>
<td>Prolene</td>
<td>2/5</td>
<td>Monofil.</td>
<td>Min tissue reactivity Med. to use</td>
</tr>
<tr>
<td>Ethibond</td>
<td>3/5</td>
<td>Braided</td>
<td>Min tissue reactivity Hard to use</td>
</tr>
<tr>
<td>Steel</td>
<td>5/5</td>
<td>Monofil.</td>
<td>Min tissue reactivity Hard to use</td>
</tr>
</tbody>
</table>

Closure

- **Adhesives**
 - Cyanoacrylate adhesives.
 - Only for superficial layer closure.
 - Must have secure buried subcutaneous sutures to aid in edge eversion.
 - Evert wound edges prior to application.
 - Ideal for children.

DERMABOND

- Octyl-2-cyanoacrylate
 - Long-chain cyanoacrylate derivative
 - Less tissue reactivity
 - More flexible
 - Increased biomechanical strength

CYANOACRYLATE ADHESIVES

- Synthetic tissue adhesives
- Use limited to superficial skin closure
- Associated with tissue toxicity if implanted subcutaneously
 - By-products of degradation include cyanoacetate and formaldehyde
 - Shorter chain cyanoacrylate derivatives (ethyl and butyl) associated with greater toxicity
TECHNICAL POINTS

- Insure good hemostasis
- Careful preparation and handling of tissues
- Use of everting subcutaneous sutures will maximize cosmetic result
- Apply Dermabond on horizontal surface
- Use multiple thin layers of Dermabond

Subcutaneous sutures are critical to eliminate sub-Q dead space prior to application of Dermabond.

Skin closed with subcuticular suture and then applied Dermabond. Also Dermabond polymerized then suture pulled out prior to awakening patient from anesthesia.

Post-op

- Aseptic environment 1-2 days
 - Absorptive, occlusive dressing.
 - Antibiotic ointment.
- Reinforce with tape as necessary.
- Compression or drain for high risk wounds (extensive undermining, concavity).
- Early removal of sutures with replacement with tape.

Adjuvant procedures
- Taping
- Steroid injection
- Silicone sheeting
- Dermabrasion
- Scar revision
Topical Scar Prevention

- Post-operative wound care
 - Occlusive or semi-occlusive dressing to maintain moisture

- Sun avoidance!!
 - Limit sun exposure for one year+
 - Zinc fortified sunscreens (spf 40+)

- Alleviation of tension
 - Taping
 - Adhesives

- Silicone Gels
 - Sternal incisions: decrease pigmentation, pliability, pain and pruritis

- Silicone Sheets
 - May reduce hypertrophic scar
 - Mechanism unknown.
 - Optimal duration of use unknown (2d to 6 mo after injury)
 - Disadvantages: hygiene, frequent sweating, compliance. Need to change, clean and wash

- Mederma Skin Care Gel
 - Active ingredient: Allium cepa onion extract with derivative quercetin (a bioflavanoid)
 - antiproliferative and anti-inflammatory effects
 - 1999 pilot study: 97 patients db blind.
 - Pt. perceived increase scar softness
 - No change in scar erythema and pruritis.
Topical Scar Prevention

- Mederma Skin Care Gel
 - 2002 study in rabbits: Greater collagen organization on histology, No significant benefit on scar elevation, dermal vascularity, or inflammation.
 - 2004 in vitro study: Quercetin results in reduction in TGF-β, inhibits fibroblast proliferation, collagen production, and lattice contraction.

Surgical Scar Revision

- Fusiform excision and closure
- Scar camouflaging techniques: Z-plasty, W-plasty, Geometric Broken Line Closure
- Scar repositioning: V to Y advancement, Serial partial excision
- Composite grafting

Pearls for prevention by location

- Special problems
 - Complex wounds
 - The lips
 - The ears
 - The eyelids
 - The nose

Specific Types of Wounds

- Small stellate wounds converted into simple lacerations
- Trapdoor lacerations (tangential partial avulsion injury): leaving a U-shaped flap
 - Flap is small: excised & the surrounding tissue closed primarily
 - Larger flaps: replaced & closed to avoid a pincushion deformity
Closure

- Half-buried mattress
 - Useful to secure corner into angle.

Pearls for prevention by location

- For extensive wounds, not easily closed
- Healing by secondary intention
 - OK over solid convex surfaces
 - Not OK over concave areas, near facial landmarks

Specific Types of Wounds

Lip Injuries

- Layered closure: skin, sub-q, muscle, mucosa
- The skin & subcutaneous tissues repaired with careful eversion to prevent inversion deformities after wound contraction

Specific Types of Wounds

Lip Injuries

- Lacerations that cross the vermilion: a single monofilament "key stitch" is placed at the junction of skin & vermilion
- Avulsion up to 1/4 of the lip closed primarily without functional or aesthetic deficits
- > 1/4 of the lip tissue is lost: local flaps
Specific Types of Wounds

- **Lip Injuries**
 - Abbe & Karapandzic rotation flap \(\rightarrow \) defects of 40% to 60%
 - Defects > 60% require a check flap (the fan flap)
 - Near-total loss may \(\rightarrow \) distant pedicle or free-tissue transfer
 - Amputation of the lip presents + a viable amputated segment \(\rightarrow \) microvascular replantation

Specific Types of Wounds

- **Auricular Injuries**
 - Thorough irrigation, antibiotics (anti-pseudomonas)
 - Most auricular lacerations should be closed primarily, except for human bites, which are extensively contaminated & may benefit from 3 to 4 days of open treatment before delayed closure

Specific Types of Wounds

- **Auricular Hematoma**
 - Pathophysiology
 - Hematoma b/n cartilage and perichondrium
 - Devascularizes cartilage
 - Irritated perichondrium produces new cartilage
Auricular hematoma

- **Treatment**
 - Close incision
 - **KEY:** Pressure bolster 7-10 days

 ![Image of Auricular Hematoma](David W. Kim, MD Facial Plastic and Reconstructive Surgery, UCSF)

- **Complications**
 - Chondritis and perichondritis
 - Cauliflower ear

 ![Image of Auricular Hematoma Complications](David W. Kim, MD Facial Plastic and Reconstructive Surgery, UCSF)

- **Specific Types of Wounds**
 - **Eyelid and Lacrimal System Injuries**
 - Simple lacerations → repaired with 5-0 or 6-0 monofilament sutures → removed 5 days
 - Conjunctival portion is not severe → left open & closed with 5-0 or 6-0 buried absorbable suture (chromic catgut)
 - The "gray line" at the lash margin should first be repaired → then the anterior & posterior lid margins, using 5-0 or 6-0 monofilament
 - Orbiculans or levator muscles → repaired with absorbable sutures

 ![Image of Eyelid and Lacrimal System Injuries](David W. Kim, MD Facial Plastic and Reconstructive Surgery, UCSF)

 - **Nasal Injuries**
 - Restore near-perfect symmetry to avoid a cosmetically unfortunate result
 - Tissue loss → concern focuses on 3 major components: intranasal lining or mucosa, cartilaginous & bony framework & external cover or skin losses
 - Tissue loss < 5 mm in size → repaired primarily by mobilizing surrounding tissues & performing a layered closure

 ![Image of Nasal Injuries](David W. Kim, MD Facial Plastic and Reconstructive Surgery, UCSF)
Specific Types of Wounds

Nasal Injuries

- Complete amputations → microvascular replantation
- Avulsed segment < 1 cm → replaced & sutured back into position
- Losses of skin > 5 mm → local flaps or skin grafts
- Defects > 1.5 cm → tissue derived from forehead or nasolabial flap
- Composite defects → repaired with a combination of local flaps, cartilage grafts & skin/mucosal graft

The Nose

- Septal Hematoma
 - Interrupts blood supply to septal cartilage
 - Will lead to cartilage resorption
 - Septal abscess
 - Sepsis, meningitis, death
 - Saddle nose

Analysis

- Diagnosis depends on meticulous inspection and palpation.
- Fracture patterns
 - Lateral forces: ipsilateral bone → septum → contralateral bone
 - Frontal forces: dorsum → nasal bones → pyriform aperture → NOE
 - Younger patients with larger segments
 - Older patients with comminuted segments

Nasal Fractures: Anatomy

- Paired nasal bones
- Ascending processes of maxilla
- Thicker cephalically
- Thinner caudally
- Articulates with frontal bone, nasal septum, upper lateral cartilages

Analysis

- Length and orientation of osseous vault variable
- Assess through palpation.
- Assess in front of and above patient.
Analysis

- Accurate assessment must be made after edema subsides
 - Duration of edema varies depending on severity of trauma, patient age, thickness of skin-soft tissue envelope, and post-injury management.
 - Few days to several weeks.

- Must obtain clear sense of patient’s expectation
 - Functional only?
 - Desires pre-morbid appearance?
 - Desires straight nose?
 - Desires other refinements?
 - Deviations of nasal dorsal line very noticeable due to typical lighting and linearity.

- Radiographs may not be clinically useful.
- May be required by insurance companies for reimbursement.
- Medico-legal
- Should obtain CT scan if concerned about NOE or other facial fractures.

Fracture Classification

- **Unilateral:** moderate lateral forces
- **Bilateral:** higher energy lateral forces
Fracture Classification

- Open Book: moderate energy frontal force

- Comminuted or NOE: high energy force

Fracture Classification

- C-shaped, S-shaped: determined by dorsal septal deformities, typically from lateral forces

Management

- Conventional view of options for treatment:
 - Immediate closed reduction of simple fractures prior to onset of edema: within few hours
 - Closed reduction after swelling subsides, but prior to dense fibrous union: 5 days to 3 weeks.
 - Delayed definitive treatment after stable osseous union: after 6 months

Management

- Contemporary view of options for treatment:
 - Once edema resolves, can treat at any time
 - Approach (closed reduction vs. open reduction osteotomies via endonasal or external approach) determined by severity of injury, osseous stability, involvement of lower 2/3s, and patient’s aesthetic standards.

- Closed reduction

- Indications
 - Fracture segments sufficiently mobile (time until immobility is highly variable)
 - Main deformity is osseous
 - Mild to moderate deformity
Management

- Closed reduction
- Technique
 - Local, sedation, or general anesthetic.
 - Infiltration

Conclusions

- Prevention of unfavorable scars starts with good wound care and meticulous and thoughtful primary surgery
- Treatment strategy dependent on location and nature of injury

See page 18 for more detailed information.
<table>
<thead>
<tr>
<th>Pearls</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Dermabond should be used in conjunction with deep layer closure</td>
</tr>
<tr>
<td>7. Secondary intention only for areas over solid convex surfaces</td>
</tr>
<tr>
<td>8. Key stitch at vermilion border</td>
</tr>
<tr>
<td>9. Drain auricular hematoma and pressure bolster</td>
</tr>
<tr>
<td>10. Always check for septal hematoma</td>
</tr>
<tr>
<td>11. Closed reduction nasal fracture—technique dependent on diagnosis</td>
</tr>
</tbody>
</table>

David W. Kim, MD Facial Plastic and Reconstructive Surgery, UCSF