Understanding the Development of Muscle Atrophy and Fatty Infiltration in Massive Rotator Cuff Tears

Brian Feeley, MD
Xuhui Liu, MD
Hubert Kim, MD, PhD
Department of Orthopaedic Surgery, University of California, San Francisco

Kappa Delta Presentation, ORS 2014

Disclosures

• Funding Sources:
 – UCSF (Academic Senate)
 – OREF Young Investigator Award
 – OREF Career Development Award
 – NIH (R03AR060871—1A1)

Rotator Cuff Tears: 2000-2007

Natural history of asymptomatic rotator cuff tears: A longitudinal analysis of asymptomatic tears detected sonographically

The Demographic and Morphological Features of Rotator Cuff Disease

Symptomatic Progression of Asymptomatic Rotator Cuff Tears

How does muscle quality affect orthopaedic outcomes?

- Large and massive tears do not heal well
- Atrophy and Fatty Infiltration are important factors in outcomes after RCT
- Molecular pathways are not known
- Limited animal models to study pathophysiology muscle changes after RCT
Development of a small animal model of massive RCT: Part I

Rat model:
- Minimal healing (20%)
- Moderate atrophy, fibrosis
- Not much fatty infiltration

Picric acid stain for fibrosis
Oil Red O Stain for fat

Development of a small animal model of massive RCT: Part II

Mouse model
- Isolated denervation
- Combined groups

Supraspinular nerve
Significant atrophy at 12 weeks

Summary mouse model: separate incision for DN—better atrophy, FI, fibrosis
Molecular Mechanisms of Muscle Atrophy and Fatty Infiltration

Ideal Pathway....

Molecular pathway that controls muscle size

Possibly has a role in fatty infiltration

Define targets for therapeutic modulation (i.e. muscle specific)

RCT/mechanical unloading leads to a decrease in Akt/mTOR activity and muscle atrophy

Denervation of the RCT increases Akt/mTOR activity

How does TT result in muscle atrophy?

Lysosomal/Autophagy Pathway

(alternative pathway)

Summary:

TT: Atrophy via increased Lysosomal activity
DN: Atrophy via increased Ub/Proteosome
Early Loss of mechanical load

AKT/mTOR Pathway

Increased Lysosomal degradation
Mild muscle atrophy

Traction on SSN Denervation

Increased Ubiquitin-Proteosome pathway
Marked muscle atrophy

Late

Can Fatty Infiltration be Inhibited via Akt/mTOR Pathway?

We found a significantly increased expression of Myf-5 and PPARgamma after tenotomy.

Rapamycin inhibits development of fatty infiltration

Western Blot, Protein Expression

Immunohistochemistry

SREBP1

P-mTOR

PPARgamma

Vehicle

TT+DN

Rapamycin

Intenstiy of Band (arbitrary unit)

Rap +

Rap -

TT+DN

SREBP1

p-mTOR

PPARgamma

Sham

SREBP-1

Rapamycin

Vehicle

TT+DN

TT+DN (No Treatment)
Regulation of Fibrosis after RCT

Significant increase in fibrosis after RCT—is this responsible for non-compliant muscle?

TGF-B Signaling is upregulated after rotator cuff tears

Liu et al JSES, 2014, in press; 2014 ORS (abstract #1012)

Summary...so far

- Rat and mouse model of massive RCT are reasonable to study muscle changes after RCT
- Mechanical unloading and denervation cause different effects on muscle genotype
- Akt/mTOR pathway is an important regulator of atrophy/FI
- TGF-B likely important in fibrosis, may be upstream regulator of Akt/mTOR

UCSF Muscle Lab
Xuhui Liu, MD
Hubert Kim, MD, PhD
Niko Laron, MD
Sanjum Samagh, MD
Sunil Joshi
Bharat Ravishankar

Thank you

UCSF-VA Lab

Funding
UCSF Academic Senate
OREF
NIH (R03AR060871—1A1)