Short Bowel Syndrome

Sang-Mo Kang, M.D.
Division of Transplantation
Director, Intestinal Rehabilitation and Transplantation
University of California, San Francisco

Feldman's GastroAtlas online
Overview

- Definition/Incidence of Intestinal Failure
- Intestinal Physiology
- Etiology and Pathophysiology
- Intestinal adaptation
- Medical Management – rehabilitation
- Surgical Management
- Intestinal transplantation

Intestinal Failure: Definition

- A condition in which inadequate digestion and/or absorption of nutrients leads to malnutrition and/or dehydration
- Inability of the native gastrointestinal tract to provide nutritional autonomy

Incidence and Prevalence

- 3-4/million in western countries eventually develop intestinal failure
- Occurs in ~ 15% of pts undergoing intestinal resection
 - ~ 3% occur from massive resection
 - ~ 1/4 from multiple sequential resections
- ~70% pts with SBS are d/c from the hospital & ~ 70% of these remain alive one year later
- Improved Survival is due to ability to deliver long-term nutritional support

Causes of Intestinal Failure: Major Categories

- Loss of bowel length
- Loss or absence of bowel function
- Unresectable tumors

References:
- Thompson JS. J Gastrointestinal Surg 2000; 4: 101-4
- Meisng B. et al Gastroenterology 1996; 117:1045-50
Short Bowel Syndrome (SBS)

- Defined as loss of ≥2/3 of small bowel (remnant of <200 cm)

 Wilmore DW, Best Pract Res Clin Gastroenterol 2003;17:895

- “Functional” definition? (Fecal energy loss)

- Most common condition resulting in intestinal failure

Pathophysiology

- **INTESTINAL REMNANT LENGTH** is the primary determinant of outcome but quality also important

 - Resection of up to ½ of the SB is usually well tolerated

 - SBS is most likely to develop in patients losing > 2/3 length of SB.

 - Adults likely to require long-term TPN:
 - <50 cm small bowel AND colon
 - <100 cm small bowel AND NO colon

 - Children likely to require long-term TPN:
 - <30 cm small bowel

 - Presence of ileocecal valve is highly advantageous
 - Due to presence of ileum, prevention of bacterial reflux

 D’Baise JK et al, Am J Gastroenterol 2004;99:1388

Normal Intestinal Function

- Duodenum
 - 1500 mL

- Jejunum
 - 7000 mL

- Ileum
 - 1500 mL

- Saliva
 - 9000 mL

- Bile
 - 1000 mL

- Pancreatic secretion
 - 1000 mL

- Gastric secretion
 - 1000 mL

- **Mucosal resistance**
 - Very leaky
 - Very leaky
 - Moderately leaky

- **Na absorptive mechanism**
 - Na-nutrient
 - Na-H exchange
 - Electrogenic Na

- **Specialized absorption**
 - Ca
 - Fe

- **Bile salts**
 - Vitamin B12

Intestinal Growth

- **Small intestine**
 - Greatest growth velocity during last trimester
 - Term ~275cm

- **Colon**
 - 30-40cm at birth
 - 1.5-2.0m in adult

Feldman’s GastroAtlas online
Stages Following Massive Resection

- Large fluid/electrolyte losses (weeks)
- Fewer fluid and electrolyte problems; need for nutritional support (months/year)
 - TPN weaning?
- Intestinal adaptation

Intestinal Adaptation

- Muscular hypertropy
 - Increased bowel diameter
 - Increased wall thickness
- Mucosal hyperplasia
 - Crypt cell proliferation
 - Increased number of enterocytes
 - Villous hyperplasia
- Lengthening

Intestinal Adaptation

- Dependent on enteral nutrients
- May take 1-2 years
- Ileum adapts for macronutrient absorption
- Blunted adaptation: Active Crohn’s, radiation enteritis, carcinoma, pseudoobstruction

Intestinal adaptation-Mechanisms

- Hormonal mediators
 - Growth hormone
 - Glucagon like peptides
 - Enteroglucagon
 - Neurotensin
 - Peptide YY
 - Insulin-like growth factor
- Luminal factors
 - Glutamine
 - Polyamines
 - Epidermal growth factor
 - Trefoil peptides
 - Short chain fatty acids
 - Long chain fatty acids
Medical Management

- Early management: Critically ill in post-op setting
 - Control of sepsis, maintenance of fluid and electrolyte balance
 - TPN is required early
 - Initiation of enteral feeds when possible
 - Fluid and electrolytes losses are high in post-op period management can be challenging

- For pts that survive the early phase, goals are to maintain adequate nutritional status and prevent complications

- MAINTENANCE OF NUTRITIONAL STATUS BECOMES THE PRIMARY GOAL

SBS: Medical Management

- Fluid and electrolytes
 - Oral rehydration solution
 - Antisecretory agents (PPI)
 - Antimotility agents
 - Lomotil, Imodium, tincture of opium
 - Supplemental IV fluids may be required in addition to TPN
- Micronutrients

Medical Management -Dietary Management-

- Pts should eat more than usual (hyperphagic)
- Small meals throughout the day and/or tube feeds
- Pts with colonic continuity should eat complex CHO with starch, non-starch polysaccharides and soluble fibers (not absorbed by SB).
 - Colon ferments these carbs → butyrate (fuel)
 - 500-1000 Kcals can be absorbed from colocytes
 - Amount of energy absorbed is proportional to the length of the residual colon and may increase with adaptive response to resection
 - Medium chain triglycerides can be absorbed in the colon

SBS-other consequences

- Gastric acid hypersecretion
- Metabolic bone disease
 - Calcium deficiency
 - Renal calculi
 - Hyperoxaluria
 - Liver disease
 - Cholelithiasis
 - Bacterial overgrowth
 - D-lactic acidosis
 - Neurologic syndrome
SBS: Pharmacologic Options

- Antisecretory, antimotility agents
- Antibiotics for overgrowth
- Growth hormone?
- Glucagon-like peptide II (Gattex)
- Glutamine supplementation of feeds

Glucagon like peptide 2

- Proglucagon-derived peptides
 - Synthesized in L cells
- Tissue specific post-translational processing of proglucagon in the intestine liberates PGDPs
- Highly localized expression of GLP-2 receptor in intestinal epithelium

Teduglutide (Gattex)

Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome

Jeppesen et al. Gut. 2011;60:902-14
How to feed

- CONTINUOUS ENTERAL FEEDINGS ARE ADVANTAGEOUS
 - Via NG or GT
 - Constant saturation of carrier transport proteins
 - Take full advantage of absorptive surface area available
- Older children have better capacity to regulate gastric emptying

How to feed

- ADVANCE SLOWLY
 - Concentration vs. volume
- Small quantities of oral feedings
 - Scheduled at least 2-3 times per day
 - Stimulate suck swallow
 - Minimize feeding aversion

Home Parenteral Nutrition

- TPN should be compressed volume and time of infusion. (preferably over night)
- Tapered over 30-60 min to avoid hypoglycemia.
- Complications;
 - Avoid line sepsis (0.3/ year)
 - Line thrombosis

Jeppesen et al. Gut. 2011;60:902-14

Woolf GM et al. Gastroenterology 1983; 84:823-8
PN complications

- Catheter related:
 - Sepsis
 - Access
 - Venous thrombosis
 - Occlusion
 - Migration

- Metabolic:
 - Liver disease
 - Biliary stones
 - Metabolic bone disease
 - Trace element and/or vitamin deficiency

PNALD

- Biochemical elevations in:
 - Serum aminotransferases
 - Alkaline phosphatase, GGT
 - Bilirubin

- Histologic changes
 - Steatosis
 - Steatohepatitis
 - Cholestasis
 - Cirrhosis

- May improve with decreased lipid infusion and/or switch to Omega-3 enriched lipids

SBS: Surgical Management

- Ostomy closure
- Restoration of bowel continuity
- Bowel lengthening and tapering procedures

Surgical Management

- Dilated segments of bowel with ineffective peristalsis are associated with:
 - bacterial overgrowth
 - secretory diarrhea
 - mucosal inflammation
 - increased malabsorption
 - increase risk of liver disease

- Aims:
 - Increase total length of small bowel, prevent stasis in dilated segment
Surgical Management

- Experimental animal models:
 - Constriction of intestinal valve or sphincter
 - Denervation of intestinal segments

- Human Experience:
 - Reversing segments of intestine
 - Antiperistaltic “physiologic valve”
 - Bowel lengthening procedures:
 - Bianchi – longitudinal lengthening
 - STEP – serial transverse enteroplasty

Increasing Absorptive Surface Area

Serial Transverse Enteroplasty (STEP)

- Pt selection: Dilated intestinal segment, bacterial overgrowth.
- Stapler is from Alternating directions.
- Less complicated than Bianchi Procedure.
- Improves absorptive capacity in ~90% pts.
- Complications:
 - Leak and obstruction ~20%
• Infant < 12 mos
• 60/74 consecutive days of PN during first year of life
• 272 infants enrolled
• Follow up data – median 25.7 months

The impact of multi-disciplinary intestinal rehabilitation programs on the outcome of pediatric patients with intestinal failure: A systematic review and meta-analysis
Jennifer D. Stanger, Carol Oliveira, Christopher Blackmore, Yann Avitzur, Paul W. Wales*

• Implementation of an IRP results in
 – Reduction in septic episodes
 – Increase in patient survival (22 -> 42%)

SBS: Management

• Remedial surgery
• Nutritional support
• Medication
• Transplantation

Implementation of an IRP results in
– Reduction in septic episodes
– Increase in patient survival (22 -> 42%)
Medicare Criteria for Failure of Parenteral Nutrition

- Impending or overt liver failure
- Thrombosis of 2 or more central veins
- 2 or more episodes of systemic sepsis per year
- Episode of line-related fungemia, septic shock or ARDS
- Frequent episodes of severe dehydration

Fishbein TM et al. Gastroenterology 2003;124:615

Types of Transplants

Total intestinal transplants in the US

Graft survival among intestinal transplant recipients transplanted in 2006, by age: deceased donors

Causes for Transplantation in Current Era (Children)

Causes for Transplantation in Current Era (Adults)

UCSF Program

- Multidisciplinary team
- Outpatient and inpatient
- Intestinal rehabilitation
- TPN management
- Intestinal transplantation
- Gastric neurostimulator for refractory gastroparesis
Goals

- Anticipate physiology based on residual anatomy
- Promote intestinal adaptation
 - Nutritional management
 - Medical management
 - Surgical management
- Assess complications
 - Bowel dilatation
 - Liver disease
 - Recurrent sepsis
- Early evaluation for transplantation

UCSF Program

Nursing
Betsy Haas-Beckert
Claudia Praglin

Nutrition
Viveca Ross

Pharmacy
David Quan

Gastroenterology
Sue Rhee

Surgery
Sang-Mo Kang

UCSF Program
877-sm-bowel
(877-762-6935)

Fax referrals: 415-353-8917
IN 1.10 Characteristics of patients on the intestinal transplant waiting list on December 31, 2001 & December 31, 2011

<table>
<thead>
<tr>
<th>Level</th>
<th>2001 N</th>
<th>2011 N</th>
<th>2001 %</th>
<th>2011 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>64</td>
<td>126</td>
<td>49.5%</td>
<td>46.5%</td>
</tr>
<tr>
<td>6-11</td>
<td>40</td>
<td>66</td>
<td>28.4%</td>
<td>24.4%</td>
</tr>
<tr>
<td>12-17</td>
<td>12</td>
<td>20</td>
<td>16.1%</td>
<td>16.1%</td>
</tr>
<tr>
<td>18-24</td>
<td>12</td>
<td>29</td>
<td>15.4%</td>
<td>16.4%</td>
</tr>
<tr>
<td>25-34</td>
<td>15</td>
<td>10</td>
<td>11.1%</td>
<td>10.1%</td>
</tr>
<tr>
<td>35-44</td>
<td>9</td>
<td>5</td>
<td>6.3%</td>
<td>5.6%</td>
</tr>
<tr>
<td>45-54</td>
<td>0</td>
<td>3</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>55+</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>2001 N</th>
<th>2011 N</th>
<th>2001 %</th>
<th>2011 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>85</td>
<td>115</td>
<td>53.1%</td>
<td>42.4%</td>
</tr>
<tr>
<td>Female</td>
<td>75</td>
<td>110</td>
<td>46.9%</td>
<td>57.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race</th>
<th>2001 N</th>
<th>2011 N</th>
<th>2001 %</th>
<th>2011 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>102</td>
<td>102</td>
<td>63.8%</td>
<td>61.4%</td>
</tr>
<tr>
<td>Black</td>
<td>34</td>
<td>48</td>
<td>21.3%</td>
<td>17.7%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>12</td>
<td>100</td>
<td>6.9%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Asian</td>
<td>3</td>
<td>7</td>
<td>1.9%</td>
<td>2.6%</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>5</td>
<td>0.6%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary cause</th>
<th>2001 N</th>
<th>2011 N</th>
<th>2001 %</th>
<th>2011 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necrotizing enterocolitis</td>
<td>25</td>
<td>40</td>
<td>15.0%</td>
<td>14.8%</td>
</tr>
<tr>
<td>Congenital</td>
<td>38</td>
<td>45</td>
<td>23.8%</td>
<td>16.6%</td>
</tr>
<tr>
<td>Other</td>
<td>50</td>
<td>51</td>
<td>31.3%</td>
<td>31.6%</td>
</tr>
<tr>
<td>Pseudo- obstruction</td>
<td>9</td>
<td>16</td>
<td>5.6%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Entero- jejunos</td>
<td>2</td>
<td>1</td>
<td>1.3%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Other</td>
<td>36</td>
<td>78</td>
<td>22.5%</td>
<td>28.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transplant status</th>
<th>2001 N</th>
<th>2011 N</th>
<th>2001 %</th>
<th>2011 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed for kidney</td>
<td>147</td>
<td>197</td>
<td>51.9%</td>
<td>46.3%</td>
</tr>
<tr>
<td>Listed for liver</td>
<td>32</td>
<td>13</td>
<td>10.4%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Active</td>
<td>13</td>
<td>29</td>
<td>8.1%</td>
<td>15.7%</td>
</tr>
<tr>
<td>Inactive</td>
<td>72</td>
<td>96</td>
<td>40.6%</td>
<td>42.8%</td>
</tr>
<tr>
<td>Time on waitlist</td>
<td><1 y</td>
<td>85</td>
<td>52.1%</td>
<td>31.7%</td>
</tr>
<tr>
<td>1-3</td>
<td>27</td>
<td>18.9%</td>
<td>22.5%</td>
<td></td>
</tr>
<tr>
<td>3+</td>
<td>18</td>
<td>11.3%</td>
<td>12.5%</td>
<td></td>
</tr>
<tr>
<td>Medical urgency status</td>
<td>51</td>
<td>56.5%</td>
<td>58</td>
<td>60.2%</td>
</tr>
<tr>
<td>Inactive</td>
<td>20</td>
<td>10.8%</td>
<td>18.8%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>100.0%</td>
<td>271</td>
<td>100.0%</td>
</tr>
</tbody>
</table>