Preoperative Cardiac Evaluation: The New Guidelines

Hugo Quinny Cheng, MD
Division of Hospital Medicine
University of California, San Francisco

Disclosures

• No financial relationships with pharmaceutical industry
• No discussion of unapproved medications
• Non-FDA approved indications for medications to be presented
Preoperative Evaluation Guidelines

1. How do you assess risk for cardiac complications?
2. What should be done with (drug-eluting) stents?
3. What medications can reduce the risk of cardiac complications?

Class 1 Should do it
2a Reasonable to do it
2b Not unreasonable to do it
3 Don’t do it. No, really, just don’t
A 70-y.o. man with progressive weakness due to cervical myelopathy will have spinal decompression & fusion. He has insulin-requiring diabetes and a remote CVA. He uses a walker, needs help with some ADLs.

Medications include aspirin, statin, ACE-inhibitor

Labs noted for Cr = 1.6

70-y.o. with IDDM and remote stroke undergoing cervical spine surgery for weakness. Cr = 1.6

How would you estimate this patient’s risk for cardiac complications?

1. Over 10%
2. Between 5-10%
3. Between 1-5%
4. What? Do I look like a Ouija board?
70-y.o. with IDDM and remote stroke undergoing cervical spine surgery for weakness. Cr = 1.6

Should this patient receive a stress test?

1. Yes
2. No

Revised Cardiac Risk Index

Predictors:
- Ischemic heart disease
- Congestive heart failure
- Diabetes requiring insulin
- Creatinine > 2 mg/dL
- Stroke or TIA
- “High Risk” operation (intraperitoneal, intrathoracic, or suprainguinal vascular)

<table>
<thead>
<tr>
<th># of RCRI</th>
<th>Complications</th>
<th>All</th>
<th>Serious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors</td>
<td></td>
<td>0.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1.3%</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4%</td>
<td>2.4%</td>
</tr>
<tr>
<td>≥ 3</td>
<td></td>
<td>9%</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

All: MI, cardiac arrest, complete heart block, *pulmonary edema*

Serious: MI & cardiac arrest

New Cardiac Risk Prediction Tool

Derived from National Surgical Quality Improvement Program (NSQIP) database:
• > 400 K patients in derivation & validation cohorts
• Wide range of operations
• “Complication” = 30-day incidence of MI & cardiac arrest

<table>
<thead>
<tr>
<th>Independent Predictors</th>
<th>1. Type of surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Age</td>
</tr>
<tr>
<td></td>
<td>3. Serum creatinine > 1.5 mg/dL</td>
</tr>
<tr>
<td></td>
<td>4. Functional status (dependency for ADLs)</td>
</tr>
<tr>
<td></td>
<td>5. American Society of Anesth (ASA) class</td>
</tr>
</tbody>
</table>

ASA Class (a brief digression)

American Society of Anesthesiologists Physical Classification
1. Healthy, normal
2. Mild systemic disease
3. Severe systemic disease
4. Severe systemic disease that is a constant threat to life
5. Moribund patient not expected to survive without surgery
70-y.o. with h/o remote MI, stroke, IDDM undergoing cervical spine surgery. Needs help with some ADLs.

Age 70
Creat > 1.5
ASA Class 3
Dependency: Partial
Procedure: Spine

By clicking on the “Submit” button below, you acknowledge that you have read, understand, and agree to be bound by the terms of the GoMD Online Calculator End Agreement.

Estimate risk of perioperative myocardial infarction or cardiac arrest.

Age	70
Creatinine	<1.5 mg/dL / 133 µmol/L
ASA Class	ASA 3

ASA 1 = Normal healthy patient
ASA 2 = Patients with mild systemic disease
ASA 3 = Patients with severe systemic disease
ASA 4 = Patients with severe systemic disease that is a constant threat to life
ASA 5 = Moribund patients who are not expected to survive without the operation

Preoperative Function: Partially Dependent
Procedure: Spine

www.qxmd.com/calculate-online/cardiology/gupta-perioperative-cardiac-risk
70-y.o. with h/o remote MI, stroke, IDDM undergoing cervical spine surgery. Needs help with some ADLs.

Age 70
Creat > 1.5
ASA Class 3

Dependency: Partial
Procedure: Spine

Estimated risk of perioperative MI or cardiac arrest = **1.3%**

www.qxmd.com/calculate-online/cardiology/gupta-perioperative-cardiac-risk

2014 ACC/AHA Guideline

Low Clinical Risk?
- (< 1% or RCRI = 0 or 1)
 - yes: Go to OR
 - no: Functional Capacity?
 - ≥ 4 METs: Go to OR
 - < 4 METs or ?
 - no: Will stress test result change management?
 - yes: Obtain pharmacologic stress test
 - no: Go to OR or consider alternative approach
 - 2a if > 10 METs
 - 2b if 4-10 METs
70-y.o. with **DES placed 8 months ago** for stable angina, IDDM and remote stroke undergoing cervical spine surgery for progressive weakness.

When should he have surgery?

1. Operate now, he can’t wait
2. Wait 12 months after stent placement
3. How about never? Is never good for you?

Surgical Outcomes After Stenting

Question: How do stent type and time until surgery affect risk of cardiac complications?

Study Design: Retrospective cohort analysis
- Over 25,000 pts who had noncardiac surgery between 6 weeks & 2 years after BMS or DES placement
- Looked at effect of time since stenting and type of stent on major cardiac complications (MI, all-cause mortality, revascularization)

Time Since Stent Placement

Time of surgery after PCI didn’t matter after first 6 months

2014 ACC/AHA Guidelines for PCI

- Highest thrombosis risk in first 4-6 weeks (BMS or DES)
- Optimal delay in elective surgery after PCI: (Class 1)
 - Balloon angioplasty: 14 days
 - Bare metal stent: 30 days
 - Drug eluting stent: 12 months
- 6 months delay after DES may be acceptable if risk of further delay outweighs risk of thrombosis (Class 2b)

Guidelines for DES

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC / AHA</td>
<td>Wait 12 months before elective surgery…but maybe 6 months is ok if delay is harmful</td>
</tr>
<tr>
<td>ACCP</td>
<td>• Wait 6 months before surgery • If < 6 months, continue dual therapy</td>
</tr>
<tr>
<td>ESC</td>
<td>• Wait 12 months before surgery • 6 month delay OK for new-generation DES</td>
</tr>
</tbody>
</table>

Perioperative β-blockers

70-y.o. man will have spinal decompression & fusion. Has stable angina, IDDM, and a remote CVA. He uses a walker, needs help with some ADLs.

Would you start a beta-blocker?

1. Yes, it prevents postop MI
2. Maybe, I’m worried about risks
3. No, I’ve stopped doing this
POISE: Biggest β-blocker Trial

Patients: 8351 pts with s/f major noncardiac surgery
- CAD, CHF, CVA/TIA, CKD, DM, or high-risk surgery
- Not already taking β-blocker

<table>
<thead>
<tr>
<th>Time</th>
<th>Dose 1</th>
<th>Dose 2</th>
<th>Dose 3 & Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4 h</td>
<td>Metoprolol XL 100 mg</td>
<td>Metoprolol XL 100 mg</td>
<td>Metoprolol XL 200 mg</td>
</tr>
<tr>
<td>0-6 h</td>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outcome: 30-day cardiac mortality, nonfatal arrest or MI

Devereaux PJ. Lancet. 2008; 371:1839-1847

POISE: Results

Metoprolol XL:
Reduced cardiac events (mostly nonfatal MI)
but
Increased risk of stroke & total mortality

Devereaux PJ. Lancet. 2008; 371:1839-1847
Patients: 1066 pts at elevated risk of postoperative cardiac complications, undergoing elective non-CV surgery

Treatment: Bisoprolol 2.5 mg daily started at randomization
- dose titrated in hospital by 1.25 - 2.5 mg daily
- maximum 10 mg daily
- target heart rate = 50-70 with SBP >100

Drug started median 34 days prior to surgery

Outcome: 30-day cardiovascular mortality or nonfatal MI

DECREASE-IV Results

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Bisoprolol</th>
<th>Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Day MI or Cardiac Mortality</td>
<td>6%</td>
<td>2%</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Investigation of possible breaches of academic integrity

Findings regarding DECREASE IV:
- Data & documentation missing
- Inclusion criteria violated
- Outcomes not assessed by claimed protocol
- Cannot vouch for conclusions from this trial

ACC/AHA guideline committee excluded DECREASE study when making recommendations

2014 ACC / AHA Guideline for β-blockers

Strong recommendation to continue if… (1)
- Already using β-blocker to treat angina, HTN, arrhythmia

May be reasonable to consider initiation if… (2b)
- High clinical risk (e.g., RCRI score ≥ 3)
- Ischemia seen on preoperative stress test

Uncertain benefit to preoperative initiation if…
- Compelling long-term indication for treatment

Avoid initiation… (3)
- On day of surgery
Stress from surgery

Clonidine

Sympathetic tone

Catecholamines

Beta-blocker

Increased HR & BP

Statin

Plaque rupture

Aspirin

Myocardial ischemia / infarction

Strategies to Prevent Postoperative MI

Beyond Beta-Blockers

For a patient at elevated risk for perioperative cardiac complications, what other drug would you start to reduce this risk?

1. Aspirin
2. Clonidine
3. Statin
4. Nothing…you’ve made me scared & cynical
POISE 2: Clonidine & Aspirin

10,010 patients having noncardiac surgery (2010-13):

- All patients had cardiovascular disease, multiple atherogenic risk factors, or were undergoing high-risk operation
- Randomized to Aspirin, Clonidine, both, or neither (2 x 2 design)
- Primary outcome: Death or MI within 30 days of surgery

Devereaux, PJ et al. NEJM 2014;370:1494-03
Devereaux, PJ et al. NEJM 2014;370:1504-13

POISE 2: Clonidine Study

Before surgery:
- Encouraged to hold usual HTN meds until seen by anesthesiologist
- Study drug given 2-4 hours prior to surgery
- Clonidine 0.2 mg po x 1 & 0.2 mg/day patch or placebo

After surgery:
- Patch removed 72 hours after surgery or at discretion of attending for hypotension or bradycardia

Devereaux, PJ et al. NEJM 2014;370:1504-13
POISE 2: Clonidine Results

<table>
<thead>
<tr>
<th></th>
<th>Clonidine</th>
<th>Placebo</th>
<th>Hazard Ratio</th>
<th>NNT or NNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death or MI</td>
<td>7.3%</td>
<td>6.8%</td>
<td>1.08 (NS)</td>
<td></td>
</tr>
<tr>
<td>Non-fatal MI</td>
<td>6.6%</td>
<td>5.9%</td>
<td>1.11 (NS)</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>48%</td>
<td>37%</td>
<td>1.32 (p < 0.001)</td>
<td>NNH = 11</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>12%</td>
<td>8.1%</td>
<td>1.49 (p < 0.001)</td>
<td>NNH = 26</td>
</tr>
</tbody>
</table>

Devereaux, PJ et al. NEJM 2014;370:1504-13

2014 ACC / AHA Guidelines for Alpha-2 Agonists (Clonidine)

Class III (no benefit)

Alpha-2 agonists for prevention of cardiac events are **not recommended** in patients who are undergoing noncardiac surgery
POISE 2: Aspirin Study

Before surgery:
- Stratified into 2 groups: new ASA users (initiation) or chronic ASA users (continuation)
- Continuation group stopped ASA ≥ 3 days prior to OR
- Aspirin 200 mg (or placebo) given right before surgery

After surgery:
- Aspirin or placebo given daily postop x 30 days (initiation) or for 7 days followed by home regimen (continuation)
- Study drug stopped if major or life-threatening bleed

Devereaux, PJ et al. NEJM 2014; 370:1494-03

POISE 2: Aspirin Results

<table>
<thead>
<tr>
<th></th>
<th>Aspirin</th>
<th>Placebo</th>
<th>Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death or MI</td>
<td>7.0%</td>
<td>7.1%</td>
<td>0.99 (NS)</td>
</tr>
<tr>
<td>Non-fatal MI</td>
<td>6.2%</td>
<td>6.3%</td>
<td>0.98 (NS)</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>4.6%</td>
<td>3.8%</td>
<td>1.23 (p = 0.04)</td>
</tr>
</tbody>
</table>

- Surgical site (78%) & GI tract (9%) most common sites
- Outcomes similar for initiation & continuation groups

Devereaux, PJ et al. NEJM 2014; 370:1494-03
2014 ACC / AHA Guidelines for Aspirin

For patients with stents: (Class 1)
- Continue DAPT for first 4-6 weeks after BMS or DES implantation, unless bleeding risk outweighs benefits
- If P2Y12-inhibitor must be stopped, continue ASA if possible

For patients without stents:
- May be reasonable to continue ASA in elective surgery if benefits outweigh risks from bleeding (Class 2b)
- Initiation of ASA does not benefit patients undergoing elective noncardiac surgery (Class 3)

Trial of Statins in Vascular Surgery

497 statin naive patients s/f vascular surgery

Fluvastatin XL 80 mg/day
- Started > 1 month preop
- Continued > 1 mo postop

Placebo

Patients followed for 30 days after surgery

Endpoint: cardiac death or nonfatal MI

Schouten et al. NEJM, 2009; 361:980-9
Trial of Statins in Vascular Surgery

Reduced nonfatal MI

No difference in rates of LFT or CPK elevation

2014 ACC / AHA Guideline for Statins

Definitely continue if… (Class I)
- Patient is already taking statins chronically

Reasonable to initiate if… (Class 2a)
- Patient is having vascular surgery

Consider initiating if… (Class 2b)
- Patient has elevated clinical risk and is undergoing a moderate or high risk operation
Preoperative Cardiac Evaluation

- Use a prediction tool to evaluate cardiac risk; focus on clinically relevant endpoints
- Think about what you’ll do with stress test result before ordering one
- Waiting 12 months to go to OR after DES is standard, but 6 months may be adequate
- Emphasize good general medical care; little if any role for medications (or invasive intervention) solely for prophylaxis

Thank You!

quinny.cheng@ucsf.edu